The Bihari–LaSalle inequality was proved by the American mathematician Joseph P. LaSalle (1916–1983) in 1949 and by the Hungarian mathematician Imre Bihari (1915–1998) in 1956. It is the following nonlinear generalization of Grönwall's lemma.

Let u and ƒ be non-negative continuous functions defined on the half-infinite ray [0, ∞), and let w be a continuous non-decreasing function defined on [0, ∞) and w(u) > 0 on (0, ∞). If u satisfies the following integral inequality,

u ( t ) α 0 t f ( s ) w ( u ( s ) ) d s , t [ 0 , ) , {\displaystyle u(t)\leq \alpha \int _{0}^{t}f(s)\,w(u(s))\,ds,\qquad t\in [0,\infty ),}

where α is a non-negative constant, then

u ( t ) G 1 ( G ( α ) 0 t f ( s ) d s ) , t [ 0 , T ] , {\displaystyle u(t)\leq G^{-1}\left(G(\alpha ) \int _{0}^{t}\,f(s)\,ds\right),\qquad t\in [0,T],}

where the function G is defined by

G ( x ) = x 0 x d y w ( y ) , x 0 , x 0 > 0 , {\displaystyle G(x)=\int _{x_{0}}^{x}{\frac {dy}{w(y)}},\qquad x\geq 0,\,x_{0}>0,}

and G−1 is the inverse function of G and T is chosen so that

G ( α ) 0 t f ( s ) d s Dom ( G 1 ) , t [ 0 , T ] . {\displaystyle G(\alpha ) \int _{0}^{t}\,f(s)\,ds\in \operatorname {Dom} (G^{-1}),\qquad \forall \,t\in [0,T].}

References


The Future of Equality in Nonprofits? Inequality and racism in nonprofits

Die weltweite Ungleichheit Der World Inequality Report 2018 Facundo

Zur Politik und Ökonomie der

Ishan Bakshi writes How the pandemic has worsened inequality in India

ഇന്ത്യയിലെ കാർബൺ അസമത്വം ഒരു വിശകലനം